So you have the results of a GWAS analysis and want to see if any specific pathways are enriched. This is a summary of how you could do that using one of a number of tools available, the SNP ratio test (SRT) http://snpratiotest.sourceforge.net/

This assumes you have the data in PLINK format.

(1) make 1000 randomized alternative phenotypes:

perl make_alt_pheno.pl mygwas.fam 1000

(2) run e.g. association on the original GWAS dataset, e.g.

plink --bfile mygwas --assoc --out mygwas_res

(3) run association on all the randomized alternative phenotypes, e.g.

plink --bfile mygwas --pheno mygwas.fam.altpheno.1000.txt --assoc

**NOTE: you can run --assoc or instead --logistic with --covar etc. to run regression with covariates, or --mh to run the Cochrane-Mantel-Haenzel test.

(4) pull out SNP and P-value information:

perl parse_assoc_files.pl

(5) run the SRT on the original dataset:

perl run_SRT_on_ORIGINAL.pl 0.05 mygwas_res.assoc.forSRT

(6) how many SNPs are at the top? (corrects for inflation of p-values):

perl count_sig_SNPs.pl mygwas_res.assoc.forSRT 0.05

(7) run the SRT on the randomized phenotypes (number is the result from (6)):

perl run_SRT_on_SIMS.pl 12075

(8) get the p-values for each pathway:

perl get_SRT_p_value.pl mygwas_res.assoc.forSRT.p0.05.ratios 0.05

See https://sourceforge.net/apps/mediawiki/snpratiotest/index.php?title=Main_Page for more information.

Have fun!

## Saturday, May 22, 2010

### P-P plots in R

e.g. a plot like this:

is generated in R using code like this, where the input file has no header, and 1 columns of p-values from a GWAS dataset:

load(sma)

load(plot)

wtccc <- read.delim("wtccc.frequentist.qq", header=FALSE)

wtccclogp <- -log10(wtccc$V1)

wtcccindex <- seq(1,nrow(wtccc))

wtcccuni <- wtcccindex/nrow(wtccc)

wtcccloguni <- -log10(wtcccuni)

qqplot(wtcccloguni,wtccclogp)

plot.qqline(wtcccloguni,wtccclogp)

see http://gettinggeneticsdone.blogspot.com/2009/07/advanced-qq-plots-in-r.html for more.

In STATA, I use code like this, where I generally run an association with the --adjust option in plink, and pull out the observed and expected p-values from the plink output, then where a is column 1 (observed) and b is column 2 (expected):

x = -log10(a)

y = -log10(b)

label if desired: e.g. label variable x "-log10P(obs)"

label if desired: e.g. label variable y "-log10P(exp)"

qqplot x y

is generated in R using code like this, where the input file has no header, and 1 columns of p-values from a GWAS dataset:

load(sma)

load(plot)

wtccc <- read.delim("wtccc.frequentist.qq", header=FALSE)

wtccclogp <- -log10(wtccc$V1)

wtcccindex <- seq(1,nrow(wtccc))

wtcccuni <- wtcccindex/nrow(wtccc)

wtcccloguni <- -log10(wtcccuni)

qqplot(wtcccloguni,wtccclogp)

plot.qqline(wtcccloguni,wtccclogp)

see http://gettinggeneticsdone.blogspot.com/2009/07/advanced-qq-plots-in-r.html for more.

In STATA, I use code like this, where I generally run an association with the --adjust option in plink, and pull out the observed and expected p-values from the plink output, then where a is column 1 (observed) and b is column 2 (expected):

x = -log10(a)

y = -log10(b)

label if desired: e.g. label variable x "-log10P(obs)"

label if desired: e.g. label variable y "-log10P(exp)"

qqplot x y

## Friday, May 21, 2010

### Kernel Density Plots

Instead of the usual PCA-type plot that looks like this:

It can be useful to represent this as a Kernel Density plot, like this:

You can typically generate something like this using eigenvectors, e.g. .evec output from EIGENSOFT. The script looks something like this:

## Load library

library(adehabitat)

## Read the eigenvectors from the Eigensoft PCA analysis output file into a variable called, in this case, "ind_pca"

## You may have more columns than just X and Y if you chose to generate more eigenvectors. Adjust accordingly.

ind_pca<-read.table("XXXXX.evec", skip=1, col.names=c("Individual_id", "X", "Y", "A", "B", "C", "D", "E", "F", "G", "H", "Population" ) )

## Extract some useful variables from the table you just loaded

xy<-ind_pca[,c("X","Y")]

id<-ind_pca[,c("Population")]

colours<-c("blue", "green", "red", "orange", "pink", "darkgreen", "purple", "brown", "grey")

means = aggregate(xy, list(id), mean)

## Run the kernel density analysis, this uses the least-square cross-validation (LSCV) and 80% threshhold

hr<-kernelUD(xy, id, h="LSCV")

ver<- getverticeshr(hr, 80)

## Plot the result in a nice pdf

#pdf(file = "Kernel_density_plot.780.eig1_vs_eig2.pdf", width = 15, height = 15)

plot(ver, colborder=colours, colpol="NA", main="Population-wise PC kernel densities based on EIGENSOFT SMARTPCA computed eigenvalues", sub="", xlab="Eigenvector 1", ylab="Eigenvector 2" )

leg.txt<-c("ABER", "DUBL", "ENGL_S_SE")

legend(0.11, 0.08, "ABER", pch=1, col="red", title="", bty="n")

legend(0.11, 0.05, "DUBL", pch=1, col="green", title="", bty="n")

legend(0.11, 0.04, "ENGL_S_SE", pch=1, col="blue", title="", bty="n")

text(means$X, means$Y, names(ver), cex=0.5, col=colours)

#dev.off()

It can be useful to represent this as a Kernel Density plot, like this:

You can typically generate something like this using eigenvectors, e.g. .evec output from EIGENSOFT. The script looks something like this:

## Load library

library(adehabitat)

## Read the eigenvectors from the Eigensoft PCA analysis output file into a variable called, in this case, "ind_pca"

## You may have more columns than just X and Y if you chose to generate more eigenvectors. Adjust accordingly.

ind_pca<-read.table("XXXXX.evec", skip=1, col.names=c("Individual_id", "X", "Y", "A", "B", "C", "D", "E", "F", "G", "H", "Population" ) )

## Extract some useful variables from the table you just loaded

xy<-ind_pca[,c("X","Y")]

id<-ind_pca[,c("Population")]

colours<-c("blue", "green", "red", "orange", "pink", "darkgreen", "purple", "brown", "grey")

means = aggregate(xy, list(id), mean)

## Run the kernel density analysis, this uses the least-square cross-validation (LSCV) and 80% threshhold

hr<-kernelUD(xy, id, h="LSCV")

ver<- getverticeshr(hr, 80)

## Plot the result in a nice pdf

#pdf(file = "Kernel_density_plot.780.eig1_vs_eig2.pdf", width = 15, height = 15)

plot(ver, colborder=colours, colpol="NA", main="Population-wise PC kernel densities based on EIGENSOFT SMARTPCA computed eigenvalues", sub="", xlab="Eigenvector 1", ylab="Eigenvector 2" )

leg.txt<-c("ABER", "DUBL", "ENGL_S_SE")

legend(0.11, 0.08, "ABER", pch=1, col="red", title="", bty="n")

legend(0.11, 0.05, "DUBL", pch=1, col="green", title="", bty="n")

legend(0.11, 0.04, "ENGL_S_SE", pch=1, col="blue", title="", bty="n")

text(means$X, means$Y, names(ver), cex=0.5, col=colours)

#dev.off()

Subscribe to:
Posts (Atom)